Airborne cat (Fel d 1), dog (Can f 1), and mite (Der I and Der II) allergen levels in the homes of Japan

Masahiro Sakaguchi, PhD,* Sakae Inouye, MD,* Tatehisa Irie, PhD,* Hiroshi Miyazawa, MT,* Mika Watanabe, MS,* Hiroshi Yasueda, PhD,* Tetsuo Shida, MD,* Hiroshi Nitta, PhD,* Martin D. Chapman, PhD,* Carsten Schou, PhD,* and Robert C. Aalberse, PhD* Tokyo, Sagamihara, and Tsukuba, Japan, Charlottesville, Va, Horsholm, Denmark, and Amsterdam, The Netherlands

We measured the airborne and floor dust allergen levels of the cat (Fel d 1), dog (Can f 1), and mite (Der I and Der II) allergens in 13 houses. Airborne allergens were sampled with a low-noise air sampler for 3 to 7 days in the living rooms where the inhabitants were living as usual. The mean levels of airborne Fel d 1 and Can f 1 in houses with cats or dogs were 5960 and 2880 pg/m³ respectively, which were about 100 times higher than levels of airborne Der I. In floor dust the mean levels of Fel d 1 and Can f 1 were 322 and 236 µg/gm respectively, which were 59 and 10 times higher than the levels of Der I. These results suggest that the airborne cat and dog allergens might be important sources of allergens for persons who live in a house with those animals, because the absolute allergen levels in both the air and dust are significantly higher than those of mite. (J ALLERGY CLIN IMMUNOL 1993;92:797-802.)

Key words: Airborne, cat, dog, mite, allergen

Cats and dogs are important sources of indoor allergens, in addition to those of mites belonging to the genus Dermatophagoides. Fel d 1 has been demonstrated to be a major allergen from cats. Recently, Can f 1 was purified as a major allergen in dog hair and dander extracts.

So far there is much information about airborne mite allergens; the airborne allergen levels are very high in disturbed conditions such as bed-making or use of a vacuum cleaner without a filter. In contrast, the levels in undisturbed or calm conditions are very low or undetectable. There have been some reports about airborne major cat allergens. Even in undisturbed conditions, the levels of airborne Fel d 1 are very high. However, there are no data regarding airborne dog allergens in the house.

In this study, to assess the extent of natural exposure to cat and dog allergens in the houses in which these animals are kept as pets, we measured the absolute concentrations of airborne Fel d 1 and Can f 1 allergens in the living rooms where the inhabitants had been living as usual and compared the levels of airborne cat and dog allergens with those of airborne mite allergens.

Abbreviations used
BSA: Bovine serum albumin
PBS: Phosphate-buffered saline
TABLE I. Floor dust and airborne allergens in the living room during routine activities

<table>
<thead>
<tr>
<th>House</th>
<th>Animal</th>
<th>Dust allergens (μg/gm fine dust)</th>
<th>Airborne allergens (pg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Fel d 1</td>
<td>Can f 1</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>1.2</td>
<td><0.8</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>1.6</td>
<td><0.8</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>0.8</td>
<td><0.8</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>1.5</td>
<td><0.8</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>0.8</td>
<td>1.3</td>
</tr>
<tr>
<td>F</td>
<td>Cat (6)</td>
<td>948.0</td>
<td><0.8</td>
</tr>
<tr>
<td>G</td>
<td>Cat (1)</td>
<td>642.0</td>
<td>0.9</td>
</tr>
<tr>
<td>H</td>
<td>Cat (1)</td>
<td>22.3</td>
<td>0.9</td>
</tr>
<tr>
<td>I</td>
<td>Cat (1)</td>
<td>20.50</td>
<td><0.8</td>
</tr>
<tr>
<td>J</td>
<td>Cat (2)</td>
<td>160.0</td>
<td><0.8</td>
</tr>
<tr>
<td>K</td>
<td>Cat (2), dog (1)</td>
<td>600.0</td>
<td>8.0</td>
</tr>
<tr>
<td>L</td>
<td>Dog (1)</td>
<td>1.1</td>
<td>392.0</td>
</tr>
<tr>
<td>M</td>
<td>Dog (1)</td>
<td>2.6</td>
<td>420.0</td>
</tr>
</tbody>
</table>

* Der I and Der II add up to Der I.

1 Numbers in parentheses indicate the number of animals in each house.

METHODS

Air sampling for airborne allergens

Samples were obtained from 13 houses in Tokyo and Tsukuba, Japan, during October 1991 and January 1992. In five of the 13 houses no animals had ever been kept as pets. Five other houses contained cats, two contained dogs, and one contained both cats and a dog living in one house (Table I). All of the animals remained indoors. A low-noise portable air sampler (KI-636, Dytec Co., Tokyo, Japan) was used for collection of airborne particles. The sampler is covered with a thick sound-absorbing material. During operation, the noise level is less than 50 db, and the flow rate is 6 L/min. The sampler was placed on the floor in a corner of the living room, and the air was collected for 5 to 7 days during usual living conditions. Air was sampled in some of the houses every week for 4 weeks between October and November 1991. All airborne particles were collected on a 37 mm diameter fiber glass filter (AP 40, Millipore, Bedford, Mass.) in the sampler. The allergens collected on the filter were eluted with 0.125 mol/L ammonium bicarbonate buffer supplemented with 0.01% bovine serum albumin (BSA). After low-speed centrifugation, the supernatant was lyophilized and then reconstituted in phosphate-buffered saline (PBS) containing 0.05% Tween 20 and 1% BSA.

Allergens from floor and bedding dust

Dust was collected from each area (4 m² of the floor and the surfaces of Japanese bedding (futons) with a vacuum cleaner (HA-10, Panasonic, Osaka, Japan) for 5 minutes. The collected dust was mixed and shaken with glass beads, then sieved through a 0.3 mm mesh screen to obtain fine dust, which was then mixed with 1000 times as much weight of PBS Tween-20 for 2 hours with constant rotation. 1

Reference allergens

Reference allergens for Fel d 1 (E3) was kindly provided by Dr. C. Anderson, Food and Drug Administration, Bethesda, Maryland, and 1 IU of this antigen corresponds to 4 μg of Fel d 1. Reference allergens for Can f 1 were prepared by Dr. Schou, and 1 IU of the international standard corresponds to 2 ng (Dr. Schou's data). Reference allergens for Der p 1, Der f 1, and Der II were prepared by Dr. Yussueda, and 1 IU of the international standard for D. pteronyssinus corresponds to 51.6 pg of Der p 1 and 3.1 pg of Der II. 4, 5

Antibodies

Preparation of mouse monoclonal antibodies to Fel d 1 (6F9 for capture and 3E4 for detector antibodies), 4 rabbit antisera (for capture), and monoclonal antibody (for detector) to Can f 1 4, 6 and rabbit antisera to Der p 1, Der f 1, and Der II has been described elsewhere.

Quantitation of allergens

Fel d 1, Can f 1, Der p 1, Der f 1, and Der II allergens were quantified by a fluorometric sandwich ELISA. 7 An Immulon 2 ELISA plate (Dynatech, Alexandria, Va.) was coated with 2 μg/ml of monoclonal anti-Fel d 1, rabbit anti-Can f 1 , anti-Der p 1, anti-Der f 1, or anti-Der II IgG preparations in 0.05 mol/L carbonate-bicarbonate buffer (pH 9.5) for 3 hours at 37°C. The plate was emptied, then postcoated with 1% BSA-PBS at 37°C for 1 hour. After washing, several concentrations of standard allergens or diluted samples in 1% BSA-PBS Tween-20 were added to the wells, and the plate was incubated overnight at 4°C. The plate was washed, and 0.2 μg/ml biotinylated corresponding IgG antibodies were added as detector antibodies. The plate was incubated for 1 hour at room temperature. After washing, β-D-galactosidase-conjugated streptavi-
RESULTS

Floor dust and airborne allergens in the living rooms

Table 1 summarizes the levels of floor dust and airborne allergens in the living rooms of the houses studied. The levels of Fel d 1 in floor dust of houses with cats ranged from 92.3 to 948 µg/gm fine dust (geometric mean value, 322 µg/gm fine dust) (Fig. 1A). When compared with mite allergens, the mean value of Fel d 1 was 59 and 83 times higher, respectively, than those of Der I and Der II. Fel d 1 allergens were found in the floor dust of all seven houses without cats (geometric mean value, 1.3 µg/gm fine dust) (Table 1). The levels of Can f 1 in the floor dust of three houses with dogs also ranged from 80 to 420 µg/gm fine dust (geometric mean value, 236 µg/gm fine dust) (Fig. 1B). Mean values were 10 and 17 times higher, respectively, than those of Der I and Der II. Can f 1 allergens in floor dust were detected in 4 of 10 houses without dogs (Table 1).

The levels of airborne allergens in the living rooms are illustrated in Fig. 1C and D. The airborne levels of Der I and Der II were very low. In contrast, the levels of Fel d 1 in houses with cats were very high, ranging from 1110 to 23,000 pg/m³ (geometric mean value, 5960 pg/m³) (Fig. 1C). When compared with airborne mite allergens, the mean value of Fel d 1 was 162 and 547 times higher, respectively, than those of Der I and Der II. Likewise, the airborne levels of Can f 1 in houses with dogs were very high and ranged from 1110 to 10,500 pg/m³ (Fig. 1D). The mean level of Can f 1 was 2880 pg/m³, which was 98 and 303 times higher, respectively, than those of Der I and Der II.

Weekly variation of airborne allergens

Airborne allergens were measured weekly for 1 month (Fig. 2). Variations in the airborne allergens in weekly air samples were observed in individual houses. For example, there was a slight variation in no. 1 of Fig. 2A. (The mean coefficient of variation of these airborne allergens was 15.8%.) In contrast, there was a relatively significant variation in house no. 2 of Fig. 2B, with a mean coefficient of variation of 55.8%.

Comparison of bedding dust allergens

Fig. 3 shows the levels of allergens in bedding dust of houses with and without cats. The levels of Der I and Der II in houses with cats were 10.0 and 7.9 µg/gm fine dust, respectively. In contrast, the levels of Fel d 1 were very high in those houses (geometric mean, 619 µg/gm fine dust).

DISCUSSION

In this study the absolute concentrations of airborne Fel d 1 and Can f 1 were found to be very high in the living rooms of houses with cats and dogs where the inhabitants had been living as usual. The airborne Fel d 1 levels are consistent
with the results of previous studies.11, 12 We found that the levels of airborne \textit{Can f 1} in houses with dogs were as high as those of airborne \textit{Fel d 1}. When compared with the airborne levels of \textit{Der I} and \textit{Der II}, the airborne levels of \textit{Fel d 1} and \textit{Can f 1} were about 100 times higher than those of mite allergens. We also found that the levels of \textit{Fel d 1} and \textit{Can f 1} in floor dust were high in houses with cats and dogs, which also reconfirms results of previous studies.12, 13, 20, 21 When we compared cat and dog allergens with mite allergens in floor dust, we found that the levels of the cat and dog allergens were much higher than those of mite allergens.

As for laboratory animal allergens, high levels of airborne allergens were found in the animal rooms. For example, levels of airborne rat major urine allergens reached hundreds of nanograms per cubic meters, depending on ventilation rate and the number of animals.22 This high concentration of airborne allergens might result from high production of allergens in animals.22

Cats and dogs themselves might be sources of airborne allergens by spreading their hair and dander and disturbing floor dust into the air.
Furthermore, airborne cat allergens fall more slowly than airborne mite allergens. Cats and dogs are among the most popular companion animals in the world. In view of possible heavy exposure to airborne Fel d 1 and Can f 1, airborne cat and dog allergens might be more important than other allergens in houses with these animals.

In all of the houses without cats, a mean of 1.3 μg/gm fine dust of Fel d 1 was found. Previous investigations have noted the presence of cat allergens in homes where cats have never been. Human beings might be dust mite allergens present in the home on clothing. Many patients with cat allergies have never owned cats. It is possible that low levels of Fel d 1 lead to sensitization to cat allergens. Likewise, we found dog allergens in the floor dust of houses without dogs. These results agree with those of other studies.

Airborne allergen levels varied in weekly samples in all of the houses studied. Also, the levels were variable among the houses. These allergen levels might be influenced by many factors: levels of the allergens present on the floor and furniture, ventilation, and human activity in the room.

Finally, high levels of Fel d 1 were found in bedding dust. A previous study has reported high levels of Fel d 1 in bedding dust; it is suggested that cats spend a lot of time on and around beds. In this study we compared the levels of cat allergens in dust with those of dust mite allergens, and the mean value of Fel d 1 in bedding was much higher than that of Der 1. These findings suggest that heavy exposure to cat allergens occurs not only during time spent in the living room but also during sleep in bed.

We thank Dr. Marianne van Hage-Marsen of the Karolinska Institute for sending cell lines that produce anti-Can f 1 monoclonal antibodies. We also thank Mr. Takeshi Sato for his technical assistance and Miss Sawaki Iimori, Naoko Kuroda, and Tomo-o Kawaguchi for their help in air sampling.

REFERENCES

20. Ohman JR, Lorrisso JR, Lewis S. Cat allergens content of...